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1. Introduction 

Current limitations in maneuvering flight vehicles confine the mission space for a 
variety of aerospace applications. Weapon systems with enhanced maneuverability 
could expand the capability to strike threats that are moving/evading, on reverse 
slopes, and partially protected behind walls/structures (i.e., defilade) or alleys. Future 
advancements must build on past research conducted in multiple areas such as novel 
control mechanisms,1–9 flight control algorithms, real-time state estimation 
algorithms,10,11 and component miniaturization11,12 to fully realize these capabilities. 

The focus of this work is flight control algorithms for high maneuverability. Flight 
at high maneuvering conditions is often described as rapidly changing (in angle of 
attack, Mach number, and control input), highly nonlinear (especially in angle of 
attack), and difficult to accurately characterize. Flow separates from the body or 
lifting surfaces, which complicates the wake flow and can yield unsteady 
(sometimes periodic) flows at a high angle of attack.13–19 Asymmetric vortices 
shedding off bodies of revolution are a transient phenomenon yielding “phantom 
yaw” or the production of appreciable side forces and moments. Flow interactions 
between upstream control surfaces (e.g., canards) and downstream surfaces can be 
highly complex.20–25 Vortices generated by canards deflected for roll can change 
the pressure distribution on the after-body and fins to such an extent that roll control 
cannot be maintained. Performance degradation usually propagates into the pitch 
and yaw directions when these adverse roll control effects are encountered due to 
the coupling of the roll, pitch, and yaw dynamics. Similar canard deflection-
induced vortex interactions in the pitch and yaw channels often reduce the stability 
of the airframe. Shock-boundary layer and shock-shock interactions are also 
challenging to understand for maneuvering vehicles flying at transonic and 
supersonic speeds. Experimental and computational studies to quantify the 
aerodynamic forces and moments resulting from these phenomena are limited, and 
of course, there is the inevitable variation associated with manufacturing and 
employing tactical munitions. 

These factors for flight vehicles at high maneuvering conditions motivate guidance 
approaches that can accommodate uncertainty. Flight control algorithms are one 
component technology that may address system performance with highly uncertain 
parameters. Model-predictive control26–29 and nonlinear dynamic inversion30,31 
strategies have been shown to work well for munitions, but a quality system model 
is often required. Similarly, optimal control32–36 can feature good performance, but 
system uncertainty is not directly addressed. Linear, parameter-varying37,38 
approaches for munitions expand on optimal control by explicitly considering 
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changes in the system characteristics. Sliding mode control33–41 has been 
successfully implemented for missiles, but the implications for highly uncertain 
applications is not fully understood. Adaptive control42,43 offers perhaps the most 
attractive approach in situations with high uncertainty, since the framework can be 
configured to capture the uncertainties of prescribed forms. There is a large body 
of literature on adaptive control, though many of the aerospace studies have been 
undertaken for aircraft rather than munitions applications. Additionally, some 
efforts have focused on robustness44–46 of flight controllers to uncertainty 
(including aerodynamic). 

The contribution of this report is to formulate algorithms within the adaptive control 
framework to address specific aerodynamic behaviors encountered by munitions 
flying at high maneuvering conditions that have not been considered previously. 
The ultimate objective of this research is to demonstrate extreme maneuvers as 
inspired by the fighter aircraft community.47,48 This report develops the evolution 
equations, which include the aerodynamic model, flight, and actuator dynamics. 
Special attention is paid to the modeling of the high maneuvering aerodynamics 
(e.g., flow interactions and separation) that have been identified for munition 
configurations of interest. Nonlinear models are linearized. Adaptive control theory 
is applied around a nominal optimal controller. The high angle-of-attack 
aerodynamic terms are explicitly contained within the adaptive controller 
derivation. Simulation results demonstrate the utility of this algorithm in situations 
of large uncertainty in high angle-of-attack aerodynamics where the adaptive 
controller delivers the desired performance and the optimal controller fails. 
Additional simulations were conducted to better understand the overall 
performance of this approach. 

2. Evolution Equations 

The nonlinear governing equations for missile flight include aeromechanics (i.e., 
aerodynamics and flight mechanics) and actuator dynamics.35 Earth-fixed (inertial) 
and body-fixed reference frames are used in the derivation of the evolution 
equations. A north-east-down coordinate system and the standard aerospace 
sequence of Euler angle rotations are applied. The following kinematic equations 
are provided: 

 �
𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
� = �

𝑐𝑐𝜃𝜃𝑐𝑐𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 − 𝑐𝑐𝜙𝜙𝑠𝑠𝜓𝜓 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 + 𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓
𝑐𝑐𝜃𝜃𝑠𝑠𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑐𝑐𝜓𝜓 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 + 𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓
−𝑠𝑠𝜃𝜃 𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃

� �
𝑢𝑢
𝑣𝑣
𝑤𝑤
�, (1) 
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 �
𝜙̇𝜙
𝜃̇𝜃
𝜓̇𝜓
� = �

1 𝑠𝑠𝜙𝜙𝑡𝑡𝜃𝜃 𝑐𝑐𝜙𝜙𝑡𝑡𝜃𝜃
0 𝑐𝑐𝜙𝜙 −𝑠𝑠𝜙𝜙
0 𝑠𝑠𝜙𝜙 𝑐𝑐𝜃𝜃⁄ 𝑐𝑐𝜙𝜙 𝑐𝑐𝜃𝜃⁄

� �
𝑝𝑝
𝑞𝑞
𝑟𝑟
�. (2) 

The rigid-body dynamics with aerodynamic and gravitational forces and moments 
are given in the following equations: 

 �
𝑢̇𝑢
𝑣̇𝑣
𝑤̇𝑤
� = 1

𝑚𝑚

⎣
⎢
⎢
⎢
⎡ −𝑄𝑄𝑄𝑄 �𝐶𝐶𝑋𝑋0 + 𝐶𝐶𝑋𝑋𝛼𝛼�2 sin2 𝛼𝛼�� − 𝑔𝑔𝑔𝑔𝜃𝜃

−𝑄𝑄𝑄𝑄 �𝐶𝐶𝑌𝑌0 + 𝐶𝐶𝑌𝑌𝛽𝛽 sin𝛽𝛽 + 𝐶𝐶𝑌𝑌𝛽𝛽3 sin3 𝛽𝛽 + 𝐶𝐶𝑌𝑌𝛿𝛿𝑟𝑟 sin 𝛿𝛿𝑟𝑟� + 𝑔𝑔𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃

−𝑄𝑄𝑄𝑄 �𝐶𝐶𝑍𝑍0 + 𝐶𝐶𝑍𝑍𝛼𝛼 sin𝛼𝛼 + 𝐶𝐶𝑍𝑍𝛼𝛼3 sin3 𝛼𝛼 + 𝐶𝐶𝑍𝑍𝛿𝛿𝑞𝑞 sin 𝛿𝛿𝑞𝑞� + 𝑔𝑔𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃⎦
⎥
⎥
⎥
⎤

− �
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

� �
𝑢𝑢
𝑣𝑣
𝑤𝑤
� , (3) 

 

 .   (4) 

The aerodynamic model is embedded in the dynamics equations. The aerodynamic 
axial force consists of zero-yaw and yaw-squared terms. Variation in the axial force 
with control action is neglected. The aerodynamic normal force in the pitch and 
yaw directions features trims and terms linear with angle of attack, linear with 
control action, and cubic in angle of attack. The effect of control action (e.g., canard 
deflections) in the pitch and yaw planes is combined in an overall aerodynamic 
scaling and control amplitude. This nonlinear model considers different normal 
forces in the pitch and yaw directions (i.e., configurational asymmetries). 

The aerodynamic roll moments partially comprise a trim (i.e., due to fin cant) and 
damping. The aerodynamic roll control is linear with control amplitude. There are 
2 terms in the roll dynamics equation that specifically address high angle-of-attack 
aerodynamics. Complex configurations (e.g., multiple fins and canards on an ogive-
cylinder-boattail) at an appreciable total angle of attack can exhibit asymmetric 
aerodynamic loading between the windward and leeward surfaces (e.g., shadowing 
of fins behind body).25 These effects often scale with the total angle of attack, are 
periodic in aerodynamic roll angle, and depend on configuration details like the 
number of fins. This phenomenon is represented in the term 𝐶𝐶𝑙𝑙𝛼𝛼�𝜙𝜙𝐴𝐴 sin𝛼𝛼� sin𝑁𝑁𝐹𝐹𝜙𝜙𝐴𝐴. 
The remaining term in the roll dynamics equation models another complex 
aerodynamic mechanism. As alluded to earlier, the action of upstream control 
surfaces can induce vortices that change the pressure distribution over downstream 
surfaces. These effects are modeled with the interaction term 𝐶𝐶𝑙𝑙𝛿𝛿𝑝𝑝

𝐼𝐼 . Here again, and 

�
𝑝̇𝑝
𝑞̇𝑞
𝑟̇𝑟
� = 𝐼𝐼−1

⎣
⎢
⎢
⎢
⎢
⎡ 𝑄𝑄𝑄𝑄𝑄𝑄 �𝐶𝐶𝑙𝑙0 + 𝐶𝐶𝑙𝑙𝑝𝑝

𝑝𝑝𝑝𝑝
2𝑉𝑉

+ �𝐶𝐶𝑙𝑙𝛿𝛿𝑝𝑝
𝐼𝐼 + 𝐶𝐶𝑙𝑙𝛿𝛿𝑝𝑝

𝐶𝐶 � sin𝛿𝛿𝑝𝑝 + 𝐶𝐶𝑙𝑙𝛼𝛼�𝜙𝜙𝐴𝐴 sin𝛼𝛼� sin𝑁𝑁𝐹𝐹𝜙𝜙𝐴𝐴�

𝑄𝑄𝑄𝑄𝑄𝑄 �𝐶𝐶𝑚𝑚0 + 𝐶𝐶𝑚𝑚𝛼𝛼 sin𝛼𝛼 + 𝐶𝐶𝑚𝑚𝛼𝛼3 sin3 𝛼𝛼 + 𝐶𝐶𝑚𝑚𝑞𝑞

𝑞𝑞𝑞𝑞
2𝑉𝑉

+ �𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞
𝐼𝐼 + 𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞

𝐶𝐶 � sin𝛿𝛿𝑞𝑞 + 𝐶𝐶𝑚𝑚𝛽𝛽 sin𝛽𝛽�

𝑄𝑄𝑄𝑄𝑄𝑄 �−𝐶𝐶𝑛𝑛0 − 𝐶𝐶𝑛𝑛𝛽𝛽 sin𝛽𝛽 − 𝐶𝐶𝑚𝑚𝛽𝛽3 sin3 𝛽𝛽 + 𝐶𝐶𝑛𝑛𝑟𝑟
𝑟𝑟𝑟𝑟
2𝑉𝑉

+ �𝐶𝐶𝑛𝑛𝛿𝛿𝑟𝑟
𝐼𝐼 + 𝐶𝐶𝑛𝑛𝛿𝛿𝑟𝑟

𝐶𝐶 � sin 𝛿𝛿𝑟𝑟 + 𝐶𝐶𝑛𝑛𝛼𝛼 sin𝛼𝛼� ⎦
⎥
⎥
⎥
⎥
⎤

− 𝐼𝐼−1 �
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

� 𝐼𝐼 �
𝑝𝑝
𝑞𝑞
𝑟𝑟
� 
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throughout this treatment, the combined influence of specific aerodynamic controls 
are reduced into a simpler term. 

Aerodynamic pitch and yaw moments consist of static and damping terms. The 
static terms are broken into rigid aerodynamic surfaces with trim, first-order, and 
third-order variation with angle of attack and control surfaces with first-order 
dependency on control amplitude. In addition, side moments are considered. Side 
moments are important because these moments often arise in practice on complex 
configurations due out-of-plane aerodynamic loading asymmetries.49 The pitch and 
yaw planes also suffer from vortex flow interactions. Induced downwash on 
stabilizing fins from upstream control surfaces often reduces stability. 

The actuator dynamics are given by a second-order system: 

 𝛿𝛿𝚤̈𝚤 + 2𝜉𝜉𝜉𝜉𝛿𝛿𝚤̇𝚤 + 𝜔𝜔2𝛿𝛿𝑖𝑖 = 𝛿𝛿𝐶𝐶,𝑖𝑖;  𝑖𝑖 = 𝑝𝑝, 𝑞𝑞, 𝑟𝑟. (5) 

These nonlinear equations of motion are linearized to facilitate a better intuitional 
understanding and underpin the control algorithm formulation. The main 
assumptions used in the linearization include only linear aerodynamic terms, 
constant speed, neglecting cross-axis moments of inertia, configurational 
asymmetries (e.g., 𝐶𝐶𝑌𝑌𝛽𝛽 = 𝐶𝐶𝑍𝑍𝛼𝛼), and any products formed by transverse components 
of body velocities (i.e., 𝑣𝑣,𝑤𝑤, 𝑞𝑞, 𝑟𝑟). The linear system features the following state 
and control vector: 

 𝑥𝑥 = [𝜙𝜙 𝑝𝑝 𝑞𝑞 𝑟𝑟 𝑣̇𝑣 𝑤̇𝑤]𝑇𝑇, (6) 

 𝑢𝑢 = [𝛿𝛿𝑝𝑝 𝛿𝛿𝑞𝑞 𝛿𝛿𝑟𝑟]𝑇𝑇. (7) 
 
This process yields the state transition and controls matrices of the linear system 
given by 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡0
0
0
0
0
0

1
𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑥𝑥𝑥𝑥

𝐷𝐷
2𝑉𝑉
𝐶𝐶𝑙𝑙𝑝𝑝

0
0
0
0

0
0

𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑧𝑧𝑧𝑧

𝐷𝐷
2𝑉𝑉
𝐶𝐶𝑚𝑚𝑞𝑞

0
0

−𝑄𝑄𝑄𝑄
𝑚𝑚
𝐶𝐶𝑁𝑁𝛼𝛼

0
0
0

𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑦𝑦𝑦𝑦

𝐷𝐷
2𝑉𝑉
𝐶𝐶𝑚𝑚𝑞𝑞

𝑄𝑄𝑄𝑄
𝑚𝑚
𝐶𝐶𝑁𝑁𝛼𝛼
0

0
0
0

𝑚𝑚𝑚𝑚
𝐼𝐼𝑦𝑦𝑦𝑦

𝐶𝐶𝑚𝑚𝛼𝛼
𝐶𝐶𝑁𝑁𝛼𝛼

𝑄𝑄𝑄𝑄
𝑚𝑚𝑚𝑚

𝐶𝐶𝑁𝑁𝛼𝛼
0

0
0

−𝑚𝑚𝑚𝑚
𝐼𝐼𝑧𝑧𝑧𝑧

𝐶𝐶𝑚𝑚𝛼𝛼
𝐶𝐶𝑁𝑁𝛼𝛼

0
0

𝑄𝑄𝑄𝑄
𝑚𝑚𝑚𝑚

𝐶𝐶𝑁𝑁𝛼𝛼 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, (8) 
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𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

0
𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑥𝑥𝑥𝑥

𝐶𝐶𝑙𝑙𝛿𝛿𝑝𝑝
0
0
0
0

0
0

𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑧𝑧𝑧𝑧

𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞

0
0
0

0
0
0

𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑦𝑦𝑦𝑦

𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞

0
0 ⎦

⎥
⎥
⎥
⎥
⎤

 . (9) 

 
The measurement matrix used to form the measurement vector (𝑦𝑦 = 𝐶𝐶𝐶𝐶) is simply 
𝐶𝐶 = 𝐼𝐼6×6. This state-space system features a bias vector to accommodate certain 
roll dynamics to include high angle-of-attack aerodynamics. 

 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎡

0
𝑄𝑄𝑄𝑄𝑄𝑄
𝐼𝐼𝑥𝑥𝑥𝑥

�𝐶𝐶𝑙𝑙0 + 𝐶𝐶𝑙𝑙𝛼𝛼�𝜙𝜙𝐴𝐴 sin𝛼𝛼� sin𝑁𝑁𝐹𝐹𝜙𝜙𝐴𝐴�
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

. (10) 

 

3. Representative Aerodynamic Phenomena 

An exemplar of the aerodynamic effects that motivate the formulation of these 
adaptive flight controllers is taken from Sahu and Fresconi24 and shown in Fig. 1. 
Steps of increasing amplitude were commanded to 4 canards on a missile flying at 
subsonic speed in a technique coupling fluid, flight, and actuator dynamics. As 
canard deflection increased, the body responded by reaching a higher angle of 
attack in addition to oscillating at the natural frequency. Over a threshold angle of 
attack, the flow over the canards separated and the body ceased increasing the angle 
of attack. The pressure distribution obtained from the fluid dynamics solver was 
integrated over the rigid aerodynamic surfaces (i.e., everything except the canards) 
and processed into components to yield the pitching moment as a function of angle 
of attack as presented in Fig. 1. The data in this figure are represented by the 
𝑄𝑄𝑄𝑄𝑄𝑄 �𝐶𝐶𝑚𝑚0 + 𝐶𝐶𝑚𝑚𝛼𝛼 sin𝛼𝛼 + 𝐶𝐶𝑚𝑚𝛼𝛼3

sin3 𝛼𝛼 + 𝐶𝐶𝑚𝑚𝑞𝑞
𝑞𝑞𝑞𝑞
2𝑉𝑉

+ 𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞
𝐼𝐼 sin 𝛿𝛿𝑞𝑞 + 𝐶𝐶𝑚𝑚𝛽𝛽 sin𝛽𝛽� term 

in Eq. 4. The pitching moment in Fig. 1 has no trim or side moment, and the 
damping is small compared to the static moment. In the absence of canard 
deflections (𝛿𝛿𝑞𝑞 = 0), the pitching moment curve based on this aerodynamic model 
(AM, shown in blue) goes through zero and has negative linear (𝐶𝐶𝑚𝑚𝛼𝛼 < 0) and 
positive cubic (𝐶𝐶𝑚𝑚𝛼𝛼3

> 0) coefficients. The upward shift of the data from the 
coupled fluid, flight, and actuator dynamics technique (CFD/FD/AD, shown in 
black) in Fig. 1 (especially clear for an angle of attack below 3°‒4°), from this no-
deflection pitching moment curve is due to interactions. Approximately 3 elongated 
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loops are evident in the data for an angle of attack below 3°‒4°, which correspond 
to the 3 commanded step changes in the canard deflections. This behavior is 
modeled with a scaling coefficient (𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞

𝐼𝐼 ) and an amplitude (sin 𝛿𝛿𝑞𝑞). The 
interaction reduces the stability (𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞

𝐼𝐼 > 0). At even higher angles of attack, a 

complicated stall process occurs on the canards and the vortices shed downstream 
to surfaces like fins to produce fluctuations in the pitching moment, as seen in the 
data of Fig. 1. The pitching moment appears to have a structurally different 
description pre- and post-canard stall. We propose to model these complex 
aerodynamic mechanisms and use these models in formulating flight controllers 
within the adaptive control framework to handle the associated uncertainty. 

 

 

Fig. 1 Pitching moment on rigid aerodynamic surfaces during canard deflections 

 



 

Approved for public release; distribution is unlimited. 
7 

Visualization of the pressure distribution on the canard-controlled vehicle 
computed by Sahu and Fresconi24 is presented in Fig. 2. Flow separation on the 
canards occuring at a high angle of attack shows up as rapid fluctuations in the 
pressure on the canards. Impingement of vortices shed during canard flow 
separation onto the fins is evident by complex pressure patterns on the fins (e.g., 
top-right fin at beginning of animation while the vehicle is at a high angle of attack). 
These data illustrate these complex aerodynamic phenomena, which are modeled 
within the adaptive control framework. 

 

 

 

 

 

 

 

Fig. 2 Pressure visualization of flow interactions on a canard-controlled vehicle 
undergoing angular motions 

4. Adaptive Control Theory 

The flight control is composed of 2 parts: a nominal controller based on optimal 
control theory and an adaptive controller. The nominal controller takes the 
following form and more details are provided in Fresconi et al.35: 

 𝑢𝑢𝑛𝑛 = 𝐾𝐾(𝑦𝑦 − 𝐾𝐾𝐹𝐹𝑟𝑟). (11) 
 

Formulation of the adaptive controller is the focus of the remaining portion of this 
section. The state-space framework is manipulated to capture the uncertainty in the 
complex aerodynamic models described earlier: 

 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵. (12) 
 

The uncertainty in the aerodynamic interactions is expressed in the following 
manner: 

 

𝜆𝜆 =

⎣
⎢
⎢
⎡
𝜖𝜖𝐶𝐶𝑙𝑙𝛿𝛿𝑝𝑝

0 0

0 𝜖𝜖𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞
0

0 0 𝜖𝜖𝐶𝐶𝑛𝑛𝛿𝛿𝑟𝑟 ⎦
⎥
⎥
⎤
. (13) 
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This model structure was selected based on the principle of matched uncertainties, 
here the uncertainties appear in the system dynamics through the control channels. 

The bias term in the linear plant model, which includes the uncertainty in the high 
angle-of-attack aerodynamic roll moment, is recast as 

 
𝜂𝜂 = Ψ𝑇𝑇𝜎𝜎(𝛼𝛼,� ϕ𝐴𝐴) = �𝐶̃𝐶𝑙𝑙𝛼𝛼�𝜙𝜙𝐴𝐴 0 0� �

sin𝛼𝛼� sin𝑁𝑁𝐹𝐹𝜙𝜙𝐴𝐴
0
0

�, (14) 

 
where the aerodynamic coefficient parameter is separated from the basis function. 
The estimated coefficient is related to the actual coefficient through the nominal 
aerodynamic roll control coefficient: 

 𝐶̃𝐶𝑙𝑙𝛼𝛼�𝜙𝜙𝐴𝐴 =
𝐶𝐶𝑙𝑙𝛼𝛼�𝜙𝜙𝐴𝐴
𝐶𝐶𝑙𝑙𝛿𝛿𝑝𝑝

. (15) 

 
The control is the sum of the nominal and adaptive components: 

 𝑢𝑢 = 𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑎𝑎. (16) 
 

Substitution of this expression along with Eq. 11 into the state-space model yields 

. (17) 

Manipulation of this equation is performed: 

 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵(𝐾𝐾𝐾𝐾𝐾𝐾 − 𝐾𝐾𝐾𝐾𝐹𝐹𝑟𝑟 + 𝑢𝑢𝑎𝑎 + 𝜆𝜆−1Ψ𝑇𝑇𝜎𝜎 − 𝜆𝜆−1𝐾𝐾𝐾𝐾𝐾𝐾
+ 𝜆𝜆−1𝐾𝐾𝐾𝐾𝐹𝐹𝑟𝑟) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵𝐾𝐾𝐹𝐹𝑟𝑟 (18) 

 𝑥̇𝑥 = (𝐴𝐴 − 𝐵𝐵𝐵𝐵𝐵𝐵)𝑥𝑥 − 𝐵𝐵𝐵𝐵𝐾𝐾𝐹𝐹𝑟𝑟 + 𝐵𝐵𝐵𝐵[(𝐼𝐼 − 𝜆𝜆−1)𝐾𝐾(𝐶𝐶𝐶𝐶 − 𝐾𝐾𝐾𝐾𝐹𝐹𝑟𝑟) + 𝑢𝑢𝑎𝑎 + 𝜆𝜆−1Ψ𝑇𝑇𝜎𝜎] (19) 

 𝑥̇𝑥 = 𝐴𝐴𝑟𝑟𝑥𝑥 − 𝐵𝐵𝑟𝑟𝑟𝑟 + 𝐵𝐵𝐵𝐵[(𝐼𝐼 − 𝜆𝜆−1)𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑎𝑎 + 𝜆𝜆−1Ψ𝑇𝑇𝜎𝜎]. (20) 
 
The high angle-of-attack aerodynamic roll moment coefficient is combined with 
the interaction uncertainty: 

 Υ = 𝜆𝜆−1Ψ�𝑇𝑇. (21) 
 
A form for the adaptive controller is proposed: 

 𝑢𝑢𝑎𝑎 = −𝜃𝜃�𝑇𝑇𝑢𝑢𝑛𝑛 − Υ�𝑇𝑇𝜎𝜎. (22) 
 
Equations 21 and 22 are substituted into the state-space formulation: 

 𝑥̇𝑥 = 𝐴𝐴𝑟𝑟𝑥𝑥 − 𝐵𝐵𝑟𝑟𝑟𝑟 + 𝐵𝐵𝐵𝐵�(𝐼𝐼 − 𝜆𝜆−1)𝑢𝑢𝑛𝑛 − 𝜃𝜃�𝑇𝑇𝑢𝑢𝑛𝑛 − Υ�𝑇𝑇𝜎𝜎 + Υ𝑇𝑇𝜎𝜎�. (23) 
 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵(𝐾𝐾𝐾𝐾𝐾𝐾 + 𝐾𝐾𝐾𝐾𝐹𝐹𝑟𝑟 + 𝑢𝑢𝑎𝑎) + 𝐵𝐵Ψ𝑇𝑇𝜎𝜎 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵𝐾𝐾𝐹𝐹𝑟𝑟 − 𝐵𝐵𝐵𝐵𝐾𝐾𝐹𝐹𝑟𝑟 
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The aerodynamic interaction uncertainty is cast into a slightly different form: 

 𝜃𝜃 = (𝐼𝐼 − 𝜆𝜆−1)𝑇𝑇. (24) 
 
The final state-space expression, including the optimal controller and adaptive 
controller with advanced aerodynamic uncertainties, is assembled: 

 𝑥̇𝑥 = 𝐴𝐴𝑟𝑟𝑥𝑥 − 𝐵𝐵𝑟𝑟𝑟𝑟 + 𝐵𝐵𝐵𝐵 ��𝜃𝜃 − 𝜃𝜃��
𝑇𝑇

 𝑢𝑢𝑛𝑛 + �Υ − Υ��
𝑇𝑇
𝜎𝜎�. (25) 

 
Next, the control laws and stability are derived. The error states are given as the 
difference between the actual and reference states: 

 𝑒𝑒 = 𝑥𝑥 − 𝑥𝑥𝑟𝑟. (26) 
 
The error dynamics are written based on equations derived earlier: 

 𝑒̇𝑒 = 𝐴𝐴𝑟𝑟𝑒𝑒 −  𝐵𝐵𝐵𝐵�𝜃𝜃�𝑇𝑇 𝑢𝑢𝑛𝑛 + Υ�𝑇𝑇𝜎𝜎�. (27) 
 
Consider the following Lyapunov candidate function: 

 𝑉𝑉 = 𝑒𝑒𝑇𝑇𝑃𝑃𝑃𝑃 +  𝛾𝛾−1𝜃𝜃�2𝜆𝜆 + 𝜇𝜇−1Υ�2𝜆𝜆1. (28) 
 
Differentiating this function yields the following: 

 𝑉̇𝑉 = 2𝑒𝑒𝑇𝑇𝑃𝑃𝑒̇𝑒 + 2𝛾𝛾−1𝜃𝜃�𝜃𝜃�̇𝜆𝜆 + 2𝜇𝜇−1Υ�Υ�̇𝜆𝜆1. (29) 
 
Manipulation of this equation is performed: 

 𝑉̇𝑉 = 2𝑒𝑒𝑇𝑇𝑃𝑃𝐴𝐴𝑟𝑟𝑒𝑒 − 2𝑒𝑒𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃�𝜃𝜃�𝑇𝑇 𝑢𝑢𝑛𝑛 + Υ�𝑇𝑇𝜎𝜎� + 2𝛾𝛾−1𝜃𝜃�𝜃𝜃�̇𝜆𝜆 + 2𝜇𝜇−1Υ�Υ�̇𝜆𝜆1 (30) 

 𝑉̇𝑉 = 𝑒𝑒𝑇𝑇[𝐴𝐴𝑟𝑟𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴𝑟𝑟]𝑒𝑒 − 2𝑒𝑒𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃�𝜃𝜃�𝑇𝑇 𝑢𝑢𝑛𝑛 + Υ�𝑇𝑇𝜎𝜎� + 2𝛾𝛾−1𝜃𝜃�𝜃𝜃�̇𝜆𝜆 +
2𝜇𝜇−1Υ�Υ�̇𝜆𝜆1. 

(31) 

 
The Lyapunov equation (𝐴𝐴𝑟𝑟𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴𝑟𝑟 = −𝑅𝑅), which holds for 𝑃𝑃 = 𝑃𝑃𝑇𝑇 > 0, 
𝑅𝑅 = 𝑅𝑅𝑇𝑇 > 0, is embedded in Eq. 31. This leads to the control update laws: 

 𝜃𝜃�̇ = 𝛾𝛾𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑛𝑛 (32) 

 Υ�̇ = 𝜇𝜇𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃. (33) 
 
Substituting these control laws into Eq. 31, an important result is obtained: 

 𝑉̇𝑉 = −𝑒𝑒𝑇𝑇𝑅𝑅𝑅𝑅 ≤ 0. (34) 

This relation implies stability in a Lyapunov sense and therefore boundedness of 
the solution (𝑒𝑒,𝜃𝜃�,Υ�). It can also be shown that the error dynamics (𝑒̇𝑒) are bounded 
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and hence 𝑉̈𝑉 = 2𝑒𝑒𝑇𝑇𝑅𝑅𝑒̇𝑒 is bounded. Finally, from Barbalat’s lemma, we conclude 
that 𝑒𝑒 → 0 as 𝑡𝑡 → ∞. 

5. Results 

The flight control algorithms and flight models were implemented in simulation. 
The linear dynamics (Eqs. 6–10) were used for the truth flight models. The system 
characteristic data for the aerodynamics, mass, actuators, sensors, and initial 
conditions were similar to that outlined in Fresconi et al.35 Nominal parameters 
were perturbed to represent the uncertainties associated with real-world systems. 

The control objective was to quickly regulate the roll angle to certain angles 
dictated by configurational symmetry (i.e., 45°, 135°, 225°, or 315°), null angular 
rates, and obtain prescribed pitch (10 𝑚𝑚

𝑠𝑠2
) and yaw (25 𝑚𝑚

𝑠𝑠2
) accelerations while 

minimizing control input. 

Simulations were conducted to assess the performance of the adaptive controller in 
contrast with optimal control. Two main series of results were generated with 
nominal system uncertainties: the first featuring higher uncertainty in the pitch and 
yaw control and interaction moment, and the second consisted of higher uncertainty 
in the angle-of-attack-dependent roll moment. The flight behaviors in the presence 
of the complex aerodynamic phenomena are of critical importance. 

Figure 3 shows the states using optimal (solid black line) and adaptive (dashed blue) 
control with nominal system uncertainties. The roll angle and angular rates are 
similar between the adaptive and optimal controllers. There is some overshoot and 
oscillation in the pitch and yaw rates with the optimal controller that the adaptive 
controller removes. The main difference between the controllers is in the lateral 
accelerations. The optimal control features a large steady-state error (e.g., yaw 
acceleration only reaches about 10 𝑚𝑚

𝑠𝑠2
 with the adaptive controller but the desired 

value is 25 𝑚𝑚
𝑠𝑠2

) and some overshoot and oscillation. The adaptive control algorithm 
achieves the commanded accelerations well. 
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Fig. 3 States with nominal system uncertainty and large pitch and yaw control and 
interaction moment uncertainty 

The roll control inputs associated with these state histories are given in Fig. 4. The 
subplots separate the control input into total (upper plot), nominal (middle plot), 
and adaptive (lower plot) contributions. Overall, the total roll control input is not 
significantly different between the methods. Roll control deflections are initially 
near 10° mainly to counter the initial 1.5-Hz roll rate and quickly decrease to nearly 
zero. There is some high-frequency fluctuation in the adaptive control during early 
times would be low-pass filtered with a more realistic actuator dynamics model. 
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Fig. 4 Roll controls with nominal system uncertainty and large pitch and yaw control and 
interaction moment uncertainty 

The pitch and yaw controls provided in Figs. 5 and 6, respectively, demonstrate 
some interesting behavior. In both pitch and yaw channels, the total control input 
is much higher for adaptive control than optimal control. Further inspection shows 
that for the adaptive controller, the contribution of the adaptive control term is much 
higher than the nominal control term. This is the reason that the adaptive controller 
achieves the commanded lateral accelerations better than the optimal controller, as 
explained using the results in Fig. 3. Again, there is some initial fluctuation in the 
adaptive controller, which would be removed with more realistic actuator 
dynamics. 
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Fig. 5 Pitch controls with nominal system uncertainty and large pitch and yaw control 
and interaction moment uncertainty 

 

Fig. 6 Yaw controls with nominal system uncertainty and large pitch and yaw control 
and interaction moment uncertainty 
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The ability of the adaptive controller to adjust the model parameters to improve 
flight control performance is now examined. Figure 7 presents the true and 
estimated (optimal and adaptive) aerodynamic control and interaction moment. The 
difference between the true value and the a priori estimate used in the optimal 
controller (~30%) represents the uncertainty in that aerodynamic term due to 
aerodynamic characterization accuracy, round-to-round variation, and so on. The 
adaptive controller updates this parameter in an attempt to improve the roll control 
performance. The data show some fluctuation in this parameter near time zero. This 
parameter converges to a value slightly closer to the truth than the a priori estimate. 
The fact that this term does not change appreciably explains why the roll control 
performance is similar between adaptive and optimal techniques for this situation. 

 

Fig. 7 Roll control and interaction moment with nominal system uncertainty and large 
pitch and yaw control and interaction moment uncertainty 

Figures 8 and 9 present the pitch and yaw control and interaction moments, 
respectively. The a priori estimate of this term is much higher than the actual value 
due to error in quantifying the aerodynamics or natural variation. Physically, this 
means that the control is less effective due to something like increased flow 
interaction or separation. After some initial fluctuation, the updates to this term 
converge quickly with low error for adaptive control. The pitch and yaw control 
deflections increase significantly over the optimal control (as shown in Figs. 4 and 
5) to achieve the desired lateral accelerations (as shown in Fig. 3) with a much 
lower pitch and yaw aerodynamic control and interaction moments than anticipated 
a priori. 
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Fig. 8 Pitch control and interaction moment with nominal system uncertainty and large 
pitch and yaw control and interaction moment uncertainty 

 
Fig. 9 Yaw control and interaction moment with nominal system uncertainty and large 
pitch and yaw control and interaction moment uncertainty 
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Figure 10 gives the angle-of-attack-dependent aerodynamic roll moment. The 
optimal controller does not include any of these aerodynamic effects. The adaptive 
controller updates this term but without any clear improvement in the estimated 
value or ultimate roll control performance. 

 

Fig. 10 Angle-of-attack-dependent roll moment with nominal system uncertainty and large 
pitch and yaw control and interaction moment uncertainty 

Figures 11 and 12 illustrate the total angle of attack and aerodynamic roll angle 
histories, respectively. The total angle of attack increases slightly for the adaptive 
controller due to the higher lateral acceleration achieved. The aerodynamic roll 
angle reaches about ‒30° because the lateral acceleration is 10 𝑚𝑚

𝑠𝑠2
 in yaw and 25 𝑚𝑚

𝑠𝑠2
 

in pitch. 
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Fig. 11 Total angle of attack with nominal system uncertainty and large pitch and yaw 
control and interaction moment uncertainty 

 

Fig. 12 Aerodynamic roll angle with nominal system uncertainty and large pitch and yaw 
control and interaction moment uncertainty 
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Another simulation was performed with large uncertainty in the angle-of-attack-
dependent roll moment. The state histories are provided in Fig. 13. These results 
demonstrate good performance by both controllers in the pitch and yaw channels, 
but the optimal control suffers due to high uncertainty in the aerodynamics for the 
roll direction. The roll rate oscillates around ‒3 Hz and the roll angle continually 
decreases. 

 

Fig. 13 States with nominal system uncertainty and large angle-of-attack-dependent roll 
moment uncertainty 

The roll control inputs presented in Fig. 14 illustrates that the optimal controller 
calls for large amplitude, oscillatory deflections. The large uncertainty in the angle-
of-attack-dependent roll moment is picked up by the adaptive term in the adaptive 
controller to maintain roll control performance. Adaptive control trades nominal 
with adaptive terms to provide a total control input similar to the optimal controller 
for pitch and yaw deflections (Figs. 15 and 16). 
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Fig. 14 Roll controls with nominal system uncertainty and large angle-of-attack-dependent 
roll moment uncertainty 

 

Fig. 15 Pitch controls with nominal system uncertainty and large angle-of-attack-
dependent roll moment uncertainty 
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Fig. 16 Yaw controls with nominal system uncertainty and large angle-of-attack-
dependent roll moment uncertainty 

 
The adaptive parameters are shown in Figs. 17–20. The roll control and interaction 
moment and angle-of-attack-dependent roll moment do not converge to the true 
value, but the combined effect in the adaptive controller provides good roll control 
performance. Similarly, the pitch and yaw control and interaction moment 
parameters in the adaptive controller do not arrive at the true value but the pitch 
and yaw control is satisfactory. 
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Fig. 17 Roll control and interaction moment with nominal system uncertainty and large 
angle-of-attack-dependent roll moment uncertainty 

 

Fig. 18 Pitch control and interaction moment with nominal system uncertainty and large 
angle-of-attack-dependent roll moment uncertainty 
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Fig. 19 Yaw control and interaction moment with nominal system uncertainty and large 
angle-of-attack-dependent roll moment uncertainty 

 

Fig. 20 Angle-of-attack-dependent roll moment with nominal system uncertainty and large 
angle-of-attack-dependent roll moment uncertainty 
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Lastly, the aerodynamic angles (Figs. 21 and 22) are similar for the adaptive and 
optimal controllers. The poor roll control performance of the optimal controller 
means that the airframe flies at those aerodynamic angles while spinning as shown 
in Fig. 13 (i.e., roll angle changes but aerodynamic roll angle does not). 

 
Fig. 21 Total angle of attack with nominal system uncertainty and large angle-of-attack-
dependent roll moment uncertainty 

 
Fig. 22 Aerodynamic roll angle with nominal system uncertainty and large angle-of-
attack-dependent roll moment uncertainty 
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6. Conclusions 

Adaptive control techniques were formulated for an agile munition that may 
possess large uncertainties in the pitch/yaw control and interaction moments and 
angle-of-attack-dependent roll moments to enhance maneuverability for engaging 
more-challenging threats. The evolution equations, representative aerodynamic 
phenomena, and the control algorithm were discussed. Results indicate that the 
adaptive controller improves performance over the optimal controller for high 
maneuvering airframes with complex aerodynamic mechanisms. There were 
fluctuations in the control signals at early times, which would be low-pass filtered 
with a more realistic actuator dynamics model. The adaptive parameters were not 
required to converge to the true values for satisfactory control performance. 
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